Cécile
Gachet
HU Berlin
Smooth projective surfaces with infinitely many real forms
Abstract.
A common undergraduate exercise is to classify quadratic forms over the real and complex numbers. Its conclusion could be that the two non-isomorphic real conics \(x^2 + y^2 + z^2 = 0\) and \(x^2 + y^2 - z^2 = 0\) are isomorphic as complex curves. In fact, the corresponding complex curve is the rational line, and it admits only the afore-mentioned two non-isomorphic real forms. Although it is quite common to find complex projective varieties admitting several real forms, the first example of a variety with infinitely many non-isomorphic real forms can be found in a 2018 paper by Lesieutre. More examples of varieties with infinitely many real forms have been found later, for instance as rational surfaces and as surfaces birational to K3 surfaces, see the 2022 paper by Dinh, Oguiso, and Yu.
This talk, reporting on joint work with Tien-Cuong Dinh, Hsueh-Yung Lin, Keiji Oguiso, Long Wang, and Xun Yu, completes the picture sketched by theses examples in the case of smooth projective surfaces. It features the following two results: First, if a smooth projective surface admits infinitely many real forms, then it is rational, or birational to a K3 surface and non-minimal, or birational to an Enriques surface and non-minimal. Second, there are surfaces obtained by blowing-up one point in an Enriques surface, which admit infinitely many non-isomorphic real forms. In this talk, I will explain the key ideas involved in the proofs of the two results, and try to give an idea of the construction used for the second one. Interestingly, we will encounter a fair share of group theory, group actions, and dynamics.